
Office Use Only: Course Identifier 20238 Page 1 of 9

El Camino College
COURSE OUTLINE OF RECORD – Approved

I. GENERAL COURSE INFORMATION
Subject and Number: Computer Science 16
Descriptive Title: Assembly Language Programming for x86 (IBM PC) Processors
Course Disciplines: Computer Science
Division: Mathematical Sciences

Catalog Description:
This course includes detailed coverage of assembly language programming for x86 processors. Topics
include hexadecimal arithmetic, two's complement arithmetic, memory organization, addressing modes,
procedure calls, the stack frame, macros, calling assembly language procedures from C or C++, recursion,
BIOS and DOS interrupts, the floating point unit and instructions, and the debugger.

Conditions of Enrollment:
Prerequisite: Computer Science 1 or Computer Science 3 or Computer Information Systems 80 with a
minimum grade of C in prerequisite or equivalent AND Mathematics 180 with a minimum grade of C or
concurrent enrollment

Course Length: X Full Term Other (Specify number of weeks):
Hours Lecture: 3.00 hours per week TBA
Hours Laboratory: 3.00 hours per week TBA
Course Units: 4.00

Grading Method: Letter
Credit Status: Associate Degree Credit

Transfer CSU: X Effective Date: 5/14/2013
Transfer UC: X Effective Date: Fall 2013

General Education:

El Camino College:

CSU GE:

IGETC:

II. OUTCOMES AND OBJECTIVES

Office Use Only: Course Identifier 20238 Page 2 of 9

A. COURSE STUDENT LEARNING OUTCOMES (The course student learning outcomes are listed below,
along with a representative assessment method for each. Student learning outcomes are not subject to
review, revision or approval by the College Curriculum Committee)

1. Students will design, code, compile, test and document programming solutions to problems by

developing PC assembly language code that makes direct use of processor instructions, interrupts,
registers, the stack, as well as existing macro and procedure libraries.

2. Students, when given a code segment will be able to trace the execution, providing the real-time
content of registers during operations, the dynamic content of the stack during procedure calls and
returns, and tracing the conditional execution of code generally, and within looping structures
specifically.

3. Students, when given PC assembly language code with errors, will be able to identify what those
errors are and will be able to modify the PC assembly language code to eliminate those errors.

4. Students will be able to explain the concepts of PC assembly language registers, interrupts, data

segment organization, addressing modes, internal data representation, decision structures, macros
and procedures.

The above SLOs were the most recent available SLOs at the time of course review. For the most current
SLO statements, visit the El Camino College SLO webpage athttp://www.elcamino.edu/academics/slo/.

B. Course Student Learning Objectives (The major learning objective for students enrolled in this course
are listed below, along with a representative assessment method for each)

1. Perform two's complement arithmetic.
 Quizzes

2. Write programs that correctly use the addressing modes.
 Other (specify)

 Programming assignment to be done in the lab and outside of class.
3. Use the following classes of processor instructions: a. Signed and unsigned arithmetic b. Data

transfer c. Comparison d. Conditional transfer e. Unconditional transfer f. Flag testing g. Loop h.
Stack operations i. String j. Type conversion k. Bit operations
 Other (specify)

 Exams, Quizzes, and programming assignments to be done in the lab and outside of class.
4. Write program code containing procedures callable within the same file.

 Other (specify)

 Exams, Quizzes, and programming assignments to be done in the lab and outside of class.
5. Write procedures external to the main file and that are callable by the main procedure.

 Other (specify)

 Exams, Quizzes, and programming assignments to be done in the lab and outside of class.
6. Write procedures that are callable from either C or C++ programs.

 Other (specify)

 Exams, Quizzes, and programming assignments to be done in the lab and outside of class.
7. Use the stack, especially during recursive procedure calls.

 Other (specify)

 Exams, Quizzes, and programming assignments to be done in the lab and outside of class.

http://www.elcamino.edu/academics/slo/

Office Use Only: Course Identifier 20238 Page 3 of 9

8. Write well-organized Macros.
 Other (specify)

 Exams, Quizzes, and programming assignments to be done in the lab and outside of class.
9. Invoke BIOS and DOS operating-system interrupts.

 Other (specify)

 Exams and quizzes.
10. Use the Microsoft Debugger.

 Other (specify)

 Programming assignments to be done in the lab and outside of class.
11. Write at least eight assembly language programs.

 Other (specify)

 Programming assignments to be done in the lab and outside of class.
12. Explain the basic organization of the von Neumann machine.

 Other (specify)

 Exams and quizzes.
13. Explain the function of the control unit and the instruction fetch, decode, and execution process.

 Other (specify)

 Exams and quizzes.

III. OUTLINE OF SUBJECT MATTER (Topics are detailed enough to enable a qualified instructor to
determine the major areas that should be covered as well as ensure consistency from instructor to
instructor and semester to semester.)

Lecture
or Lab

Approximate
Hours

Topic
Number Major Topic

Lecture 3 I Introduction to x86 Assembly Language
A. Hexadecimal Arithmetic
B. Two's complement form to represent negative numbers
C. Overview of x86 Assembly Language program structure
D. Basic organization of the von Neumann machine
E. Integer arithmetic instructions overview
F. Data movement overview
G. Introduction to the use of input/output macros

Lecture 6 II Control and Looping Instructions
A. IF structures and the GOTO statement
B. Loops - for loops, while loops, and do-while loops

Lecture 7.5 III Arrays, Pointers, Addressing Modes
A. Modeling of arrays of objects
B. Use of pointers and their relationship to arrays and

possible dynamic memory allocation
C. Accessing computer memory addresses

Lecture 7.5 IV The Stack and Procedure Calls
A. What the Stack is and how it is structured
B. How procedure calls use the stack to pass data to

procedures and return results from procedures

Office Use Only: Course Identifier 20238 Page 4 of 9

Lecture 6 V Bit Instructions, String Instructions, Tables, System Calls
A. Bit shift, set, and clear instructions
B. String manipulation and analysis instructions
C. Table set-up and data use instructions
D. System calls syntax and use

Lecture 4 VI Records, Arrays of Records, Sorting
A. Modeling the association of multiple objects within a

structure known as a record
B. Syntax and memory considerations to master when

working with arrays of records
C. Syntax and instructions related to the comparing of

objects in order to sort the objects in a particular manner

Lecture 4 VII Working With Files
A. Opening a file for input operations
B. Extracting objects from an input file
C. Opening a file for output operations
D. Storing data into an output file
E. Specific objects in a given file

Lecture 6 VIII Calling x86 Assembly Language Procedures from C or C++
A. Connecting to a procedure (function) in C or C++
B. Extract the parameter data of the procedure (function) in

C or C++
C. Return possibly modified objects to the invoking code of

the procedure (function) in C or C++

Lecture 6 IX Recursion and the Stack
A. What a recursive function is and some examples
B. How recursion relates to the x86 Assembly Language

stack
C. Stack overflow related to recursive functions
D. Lesson that a recursive function must be coded in such a

way that the recursion must stop after a finite number of
iterations

Lecture 4 X Floating-Point Unit and Corresponding Instruction Set
A. Real numbers, not just integers
B. Understanding the much greater algorithmic complexity

converting between decimal numbers and their internal
binary representation as opposed to integers and their
internal binary representation

Lab 3 XI Introduction to x86 Assembly Language
A. Hexadecimal Arithmetic
B. Two's complement form to represent negative numbers
C. An overview of x86 Assembly Language program

structure
D. Basic organization of the von Neumann machine
E. Integer arithmetic instructions overview
F. Data movement overview
G. Introduction to the use of input/output macros

Lab 6 XII Control and Looping Instructions

Office Use Only: Course Identifier 20238 Page 5 of 9

A. IF structures and the GOTO statement
B. Loops - for loops, while loops, and do-while loops

Lab 7.5 XIII Arrays, Pointers, Addressing Modes
A. Modeling of arrays of objects
B. Use of pointers and their relationship to arrays and

possible dynamic memory allocation
C. Different ways of accessing computer memory addresses

Lab 7.5 XIV The Stack and Procedure Calls
A. What the Stack is and how it is structured
B. How procedure calls use the stack to pass data to

procedures and return results from procedures

Lab 6 XV Bit Instructions, String Instructions, Tables, System Calls
A. Bit shift, set, and clear instructions
B. String manipulation and analysis instructions
C. Table set-up and data use instructions
D. System calls syntax and use

Lab 4 XVI Records, Arrays of Records, Sorting
A. Modeling the association of multiple objects within a

structure known as a record
B. Memory considerations to master when working with

arrays of records
C. Comparing of objects in order to sort the objects in a

particular manner

Lab 4 XVII Working With Files
A. Opening a file for input operations
B. Extracting objects from an input file
C. Opening a file for output operations
D. Storing data into an output file
E. Specific objects in a given file

Lab 6 XVIII Calling x86 Assembly Language Procedures from C or C++
A. Connecting to a procedure (function) in C or C++
B. Extracting the parameter data of the procedure

(function) in C or C++
C. Return possibly modified objects to the invoking code of

the procedure (function) in C or C++

Lab 6 XIX Recursion and the Stack
A. What a recursive function is and some examples
B. How recursion relates to the x86 Assembly Language

stack
C. Stack overflow related to recursive functions
D. Lesson that a recursive function must be coded in such a

way that the recursion must stop after a finite number of
iterations

Lab 4 XX Floating-Point Unit and Corresponding Instruction Set
A. Real numbers, not just integers

Office Use Only: Course Identifier 20238 Page 6 of 9

B. Understanding the much greater algorithmic complexity
converting between decimal numbers and their internal
binary representation as opposed to integers and their
internal binary representation

Total Lecture Hours 54

Total Laboratory Hours 54

Total Hours 108

IV. PRIMARY METHOD OF EVALUATION AND SAMPLE ASSIGNMENTS

A. PRIMARY METHOD OF EVALUATION:
Problem solving demonstrations (computational or non-computational)

B. TYPICAL ASSIGNMENT USING PRIMARY METHOD OF EVALUATION:
Write a set of procedures to act on the bits of a word stored in ax-register, with cl holding the
position of the bit to be processed. cl holds 0..15. The procedures are 1. SetBit: set the desired bit
to 1. 2. ClearBit: set the desired bit to 0. 3. TestBit: set CF if desired bit is 1 else clears CF. 4.
CompBit: Complement the bit: ie if bit is 1 set it to 0 if bit is 0 set it to 1. In addition, design an
adequate testing "main" procedure to enable a user program to test the procedures to determine
that they are acting properly.

C. COLLEGE-LEVEL CRITICAL THINKING ASSIGNMENTS:
1. Develop an assembly program which will receive, from the keyboard, integers represented in

character form. Conversion from character form to binary form is to take place with the
integers stored in an array.

2. Write assembly code to allow the user to define an "active" on the screen within which all write

actions will be confined. Line-wrapping is to be enabled.

D. OTHER TYPICAL ASSESSMENT AND EVALUATION METHODS:
Other exams
Quizzes
Written homework
Laboratory reports
Homework Problems
Other (specify):
Write Computer Programs

V. INSTRUCTIONAL METHODS
 Laboratory
 Lecture

Note: In compliance with Board Policies 1600 and 3410, Title 5 California Code of Regulations, the
Rehabilitation Act of 1973, and Sections 504 and 508 of the Americans with Disabilities Act, instruction
delivery shall provide access, full inclusion, and effective communication for students with disabilities.

Office Use Only: Course Identifier 20238 Page 7 of 9

VI. WORK OUTSIDE OF CLASS
Study
Required reading
Problem solving activities
Other (specify)

Development and testing of assembly programs

Estimated Independent Study Hours per Week: 6

VII. TEXTS AND MATERIALS

A. UP-TO-DATE REPRESENTATIVE TEXTBOOKS

Kip R. Irvine. Assembly Language for x86 Processors. 8th ed. Prentice Hall, 2019.

B. ALTERNATIVE TEXTBOOKS

C. REQUIRED SUPPLEMENTARY READINGS

D. OTHER REQUIRED MATERIALS

VIII. CONDITIONS OF ENROLLMENT

A. Requisites (Course and Non-Course Prerequisites and Corequisites)

Requisites Category and Justification

Course Prerequisite
Computer Science-1
or Other Knowledge and Skills

Course Prerequisite
Computer Science-3
or Other Knowledge and Skills

Course Prerequisite
Computer Information
Systems-80 or Other Knowledge and Skills

Non-Course
Prerequisite
AND

Students must have completed an introductory course in a high
level programming language. Computer Science 1 is an
introductory course in the C++ language. Computer Science 3 in
an introductory course in the JAVA programming language.
The student will be exempted from the prerequisite if she/he can
demonstrate sufficient programming knowledge in a high level
programming language (such as C/C++, C#, Visual Basic, Java,
PHP, ...) through work portfolio or oral and/or written
examination by the department of computer science faculty.

Course Prerequisite
Mathematics-180 Computational/Communication Skills

Office Use Only: Course Identifier 20238 Page 8 of 9

B. Requisite Skills
Requisite Skills

Manipulate algebraic expressions at the Pre-Calculus level.
MATH 180 - Analyze functions (including polynomial, algebraic, rational, exponential,
logarithmic, trigonometric) for critical features, including: intercepts, asymptotes,
domain, range, and average rate of change.

Solve application problems at the Pre-Calculus level.
MATH 180 - Solve application problems using the topics of the course.

Evaluate and perform operations on functions at the Pre-Calculus level.
MATH 180 - Analyze functions (including polynomial, algebraic, rational, exponential,
logarithmic, trigonometric) for critical features, including: intercepts, asymptotes,
domain, range, and average rate of change.
MATH 180 - Determine the inverse of a function (polynomial, algebraic, rational,
exponential, logarithmic, trigonometric) and analyze it in terms of critical features.
MATH 180 - Solve equations involving polynomial, rational, exponential, logarithmic,
trigonometric functions.

Write computer code expressing mathematical expressions.
CSCI 1 - Design solutions requiring translation of mathematical and algebraic steps into a
C++ program, using appropriate mathematical operators and math library functions of
the C++ implementation in use.

Write computer code implementing functions or procedures.
CSCI 1 - Utilize problem analysis and design techniques in developing solutions to
programming problems. In particular, break programming problems down into chunks,
leading to efficient use of top-down design in order to create and implement modular
solutions.

Write computer code implementing arrays.
CSCI 1 - Design programming solutions requiring the storage and manipulation of large
amounts of data (with random access ability during execution cycle), using single and
multi-dimensional arrays, such as numerical, string, char, and structure types.

C. Recommended Preparations (Course and Non-Course)

Recommended Preparation Category and Justification

D. Recommended Skills

Recommended Skills

E. Enrollment Limitations

Enrollment Limitations and Category Enrollment Limitations Impact

Course created by Joseph E. Hyman on 03/01/1988.

BOARD APPROVAL DATE: 05/23/1988

LAST BOARD APPROVAL DATE: 12/16/2019

Office Use Only: Course Identifier 20238 Page 9 of 9

Last Reviewed and/or Revised by Edwin Ambrosio on 9/6/2019

20238

