
Effective FALL 2024 Page 1 of 8

El Camino College
COURSE OUTLINE OF RECORD – Official

Course Acronym: CSCI
Course Number: 30

Descriptive Title: Advanced Programming in C++

Division: Mathematical Sciences

Department: Computer Science

Course Disciplines: Computer Science

Catalog Description:

This course re-examines earlier C++ topics covered in Computer Science 2 in greater
detail and with increased rigor. The course emphasizes the design of advanced Object-
Oriented data structures. Topics include data abstraction, abstract classes, single and
multiple inheritances, virtual and friend functions, operator overloading, generic data
types, the Standard-Template-Library, pointers and dynamic memory management,
algorithm efficiency, limits of computation, aggregation-composition modeling, and
top-down design. The course concludes with a significant creative project.

Prerequisite: Computer Science 2 with a minimum grade of C or equivalent
Co-requisite:

Recommended
Preparation:

Enrollment Limitation:

Hours Lecture (per
week):

3

Hours Laboratory (per
week):

3

Outside Study Hours: 6

Total Course Hours: 108
Course Units: 4

Grading Method: Letter Grade only
Credit Status: Credit, degree applicable

Transfer CSU: Yes

Effective Date: Prior to July 1992

Transfer UC: Yes

Effective Date:

General Education: ECC

Term:

Other:

CSU GE:

Effective FALL 2024 Page 2 of 8

Term:

Other:

IGETC:

Term:

Other:

Student Learning
Outcomes:

SLO #1 Document Programming Solutions

Students will design, code, compile, test, and document programming solutions to
problems requiring the development of C++ classes (by inheritance, by composition;
templates), requiring C++ operator overloading, requiring effective use of the Standard
Template Library, requiring effective use of pointers and dynamic memory allocation.
The students will be able to tell the asymptotic runtime complexity of a given solution
using Big-O notation.

SLO #2 Tracing and Verifying

Students, when given a code segment involving the use of a class, will be able to trace
the construction of class objects, trace the destruction of class objects, verify whether
memory leaks have occurred, trace object assignment operations, verify when copy
constructors are invoked and when overloading of copy constructors is required.

SLO #3 Identifying and Eliminating Errors

Students, when given C++ code with errors, will be able to identify what those errors
are and will be able to modify the C++ code to eliminate those errors.

SLO #4 Explaining the Concept of C++

Students will be able to explain the concept of C++ class templates and how they relate
to the concept of generics, the concept of virtual functions and polymorphism, the
concept of multiple inheritances and virtual base classes, the concept of container types
and the circumstances where specific containers should or should not be used.

Course Objectives:

1. Implement data abstraction and inheritance.
2. Implement function and operator overloading.
3. Use the Standard Template Library.
4. Create and use friend and virtual functions.
5. Create new classes by inheritance and composition.
6. Use multiple inheritances.
7. Implement virtual base classes.
8. Describe how C++ implements virtual functions.
9. Use exception handling and concurrency for complex programs
10. Use Big-O notation to express the complexity of an algorithm.

Major Topics:

I. Pointers in C++ (6 hours, lecture)

A. Declare pointers
1. Pointer Types
2. Manipulation pointers

B. Using pointers
1. Accessing variables
2. Accessing arrays

Effective FALL 2024 Page 3 of 8

3. Const and static types
4. Passing to functions
5. Dynamic Memory Allocation

C. Smart Pointers
1. Unique
2. Shared
3. Weak

II. Classes (6 hours, lecture)

A. Inheritance
1. Base/parent class
2. Derived classes

B. Modes of visibility
C. Virtual functions
D. Friend functions
E. Move Semantics

1. R-value references
2. Move operations

III. Overloading (5 hours, lecture)

A. Function
B. Operator

IV. Templates (5 hours, lecture)

A. Template Class
B. Abstract data types
C. Perfect Forwarding

1. Forwarding Reference
2. Reference Collapsing

V. The Standard Template Library (6 hours, lecture)

A. Containers
1. Deque
2. List
3. Vector
4. Map

B. Algorithms
1. Initialization
2. Sorting
3. Searching
4. Transforming

C. Iterators

VI. Advance Inheritance (3 hours, lecture)

A. Multiple inheritances
B. Virtual base classes

Effective FALL 2024 Page 4 of 8

VII Exceptions (6 hours, lecture)

A. Exception Handling
1. Throwing an Exception
2. Catching
3. Function try Blocks
4. STL Exception Class Hierarchies

B. Exception Safety
1. No-throw guarantee
2. Basic guarantee
3. Strong guarantee

VIII. Object-Oriented Programming (6 hours, lecture)

A. Designing classes
B. Hierarchies

IX. Concurrency (6 hours, lecture)

A. Threads
1. Race Conditions
2. Deadlocks
3. Mutexes

B. Tasks
C. Parallel algorithms
D. Amdahl’s Law

X. Analysis of Algorithms (5 hours, lecture)

A. Empirical calculation of runtime performance based on benchmarking.
B. Theoretical computation of asymptotic performance.
C. Recursive algorithms
D. Dynamic programming
E. Study of classical Linear, LogLinear, Quadratic, and Exponential solutions.

XI. Pointers in C++ (6 hours, lab)

A. Declare pointers
1. Pointer Types
2. Manipulation pointers

B. Using pointers
1. Accessing variables
2. Accessing arrays
3. Const and static types
4. Passing to functions
5. Dynamic Memory Allocation

C. Smart Pointers
1. Unique
2. Shared

Effective FALL 2024 Page 5 of 8

3. Weak

XII. Classes (6 hours, lab)

A. Inheritance
1. Base/parent class
2. Derived classes

B. Modes of visibility
C. Virtual functions
D. Friend functions
E. Move Semantics

1. R-value references
2. Move operations

XIII. Overloading (5 hours, lab)

A. Function
B. Operator

XIV. Templates (5 hours, lab)

A. Template Class
B. Abstract data types
C. Perfect Forwarding

1. Forwarding Reference
2. Reference Collapsing

XV. The Standard Template Library (6 hours, lab)

A. Containers
1. Deque
2. List
3. Vector
4. Map

B. Algorithms
1. Initialization
2. Sorting
3. Searching
4. Transforming

C. Iterators

XVI. Advanced Inheritance (3 hours, lab)

A. Multiple inheritances
B. Virtual base classes

XVII Exceptions (6 hours, lecture)

A. Exception Handling
1. Throwing an Exception
2. Catching
3. Function try Blocks

Effective FALL 2024 Page 6 of 8

4. STL Exception Class Hierarchies
B. Exception Safety

1. No-throw guarantee
2. Basic guarantee
3. Strong guarantee

XVIII. Object-Oriented Programming (6 hours, lab)

A. Designing classes
B. Hierarchies

XIX. Concurrency (6 hours, lecture)

A. Threads
1. Race Conditions
2. Deadlocks
3. Mutexes

B. Tasks
C. Parallel algorithms
D. Amdahl’s Law

XX. Analysis of Algorithms (5 hours, lecture)

A. Empirical calculation of runtime performance based on benchmarking.
B. Theoretical computation of asymptotic performance.
C. Recursive algorithms
D. Dynamic programming
E. Study of classical Linear, LogLinear, Quadratic, and Exponential solutions.

Total Lecture Hours: 54

Total Laboratory Hours: 54

Total Hours: 108

Primary Method of
Evaluation: 2) Problem solving demonstrations (computational or non-computational)

Typical Assignment
Using Primary Method of

Evaluation:

Create a class, MyVector, to model vectors. The private data of the class should include
a pointer to a double (storage for the elements of the vector) and an integer (the
dimension of the vector). Remember that for classes with dynamic memory allocation,
you will need to implement The Big Three. You are to overload the I/O operators,
operators + and -, and overload the operator * to model the vector dot product. You
are to write a test program to make sure your MyVector class does what it is supposed
to do.

Critical Thinking
Assignment 1:

Develop a class, MyMatrix, to model matrices. The initial implementation of the class
will utilize a double pointer to a double data type to store the elements of the matrix,
and integer values to hold the number of rows and columns. Since you will have
dynamic memory allocation, The Big Three must be implemented. You will overload the
I/O operators, operators +, -, and * (matrix multiplication). You will implement a public
member function Determinant to return the determinant of the matrix if it is a square
matrix. You are to use function recursion in the definition of the Determinant function.

Effective FALL 2024 Page 7 of 8

Finally, you are to write a test program to verify that your MyMatrix class is functioning
in a manner consistent with a matrix object, and with the good programming practices
you have been learning.

Critical Thinking
Assignment 2:

Modeling the work we have been studying in the Vehicle inheritance class hierarchy,
you are to create a Person inheritance class hierarchy. The classes Student, Voter, and
Faculty will inherit directly from Person. The class GradStudent will inherit from
Student. The class StudentVoter will inherit from both the Student class and the Voter
class. You will be making use of at least one virtual base class, virtual functions, virtual
inheritance, and multiple inheritance. Again, you are to write test code to verify that
the classes of your hierarchy are working properly. In particular, you will verify that
pointers to the base class Person may be used to properly create, dynamically, objects
of any class in your hierarchy.

Other Evaluation
Methods: Laboratory Reports, Other Exams, Quizzes

Instructional Methods: Lab, Lecture
If other:

Work Outside of Class: Problem solving activity, Required reading, Study
If Other:

Up-To-Date
Representative

Textbooks:

Stanley B. Lippman, Josee Lajoie, Barbara E. Moo. C++ Primer. 5th ed. Addison
Wesley, 2013. (Discipline Standard)

Alternative Textbooks:

Required Supplementary
Readings:

Other Required
Materials:

Requisite: Prerequisite

Category: sequential

Requisite course(s): List
both prerequisites and

corequisites in this box.
Computer Science-2

Requisite and Matching
skill(s):Bold the requisite

skill. List the
corresponding course
objective under each

skill(s).

Write C++ code using programmer-defined classes.

CSCI 2 -Explain and implement basic data structure techniques: pointers, classes,
recursion, searching, sorting, templates and dynamic memory allocation.

Write C++ code using function pointers.

CSCI 2 -Explain and implement basic data structure techniques: pointers, classes,
recursion, searching, sorting, templates and dynamic memory allocation.

Write C++ code involving dynamic memory allocation and de-allocation.

CSCI 2 -Explain and implement basic data structure techniques: pointers, classes,
recursion, searching, sorting, templates and dynamic memory allocation.

Requisite Skill:

Effective FALL 2024 Page 8 of 8

Requisite Skill and
Matching Skill(s): Bold
the requisite skill(s). If

applicable

Requisite course:

Requisite and Matching
skill(s):Bold the requisite

skill. List the
corresponding course
objective under each

skill(s).

Requisite Skill:

Requisite Skill and
Matching skill(s): Bold
the requisite skill. List

the corresponding
course objective under

each skill(s). If applicable

Enrollment Limitations
and Category:

Enrollment Limitations
Impact:

Course Created by: Joseph Hyman

Date: 10/05/1990

Original Board Approval
Date:

12/09/1991

Last Reviewed and/or
Revised by: Solomon Russell

Date: 11/13/2022
Last Board Approval

Date: 07/17/2023 effective FALL 2024

