
Effective Fall 2023 Page 1 of 9

El Camino College
COURSE OUTLINE OF RECORD – Official

Course Acronym: CSCI
Course Number: 1

Descriptive Title: Problem Solving and Program Design Using C++
Division: Mathematical Sciences

Department: Computer Science
Course Disciplines: Computer Science

Catalog Description: This course is an introduction to problem solving and program design using
structured, top-down, algorithmic development techniques applied to the
solution of numeric and non-numeric problems. Software engineering topics such
as analysis, design, implementation, testing, documentation, and maintenance of
software are discussed. Laboratory work will be done using the C++ computer
language. The course also summarizes the evolution of programming languages
illustrating how this history has led to the paradigms available today.

Note: This course meets the CSU general education requirement for mathematics
and quantitative reasoning.

Prerequisite: Mathematics 170 with a minimum grade of C or equivalent experience
Co-requisite:

Recommended Preparation:

Enrollment Limitation:

Hours Lecture (per week): 3

Hours Laboratory (per week): 3

Outside Study Hours: 6

Total Course Hours: 108
Course Units: 4

Grading Method: Letter Grade only
Credit Status: Credit, degree applicable
Transfer CSU: Yes

Effective Date: 5/19/1997

Transfer UC: Yes

Effective Date:

General Education: ECC Area 4B - Language and Rationality: Communication and Analytical Thinking
Term:

Other:

Effective Fall 2023 Page 2 of 9

CSU GE:

Term:

Other:

IGETC:

Term:

Other:

Student Learning Outcomes: SLO #1 Writing Algorithms

Students will write correct and detailed algorithms. (Properly analyze a problem
using top down design, and write an algorithm that can be translated into
computer code.)

SLO #2 Using Correct Syntax

Students will write C++ code that uses correct syntax (when declaring data types,
writing algebraic and logical expressions, naming variables, etc.).

SLO #3 Input and Output Information

Students will write C++ code that correctly uses control structures (and nested
control structures) including conditionals (like "if"), loops (like "while" and "for")
and user defined functions (both void and value returning).

SLO #4 Basic Data Structures

Students will write C++ code that correctly uses basic data structures (including
strings, arrays, and structs).

Course Objectives: 1. Utilize problem analysis and design techniques in developing solutions to
programming problems. In particular, break programming problems
down into chunks, leading to efficient use of top-down design in order to
create and implement modular solutions.

2. Represent data utilizing simple numeric and character data types in a
program and use them with input-output processes of the particular
implementation of C++ being used.

3. Design solutions requiring translation of mathematical and algebraic
steps into a C++ program, using appropriate mathematical operators and
math library functions of the C++ implementation in use.

4. Design programming solutions requiring decision-making, using
appropriate C++ selection statements, such as if-then, if-then-else and
switch.

5. Design programming solutions requiring the use of repeated processes,
using appropriate C++ iteration statements, such as for, while and do-
while loops.

6. Design, implement and manipulate C++ structure data types in order to
store and manipulate data efficiently.

7. Design programming solutions requiring the storage and manipulation of
large amounts of data (with random access ability during execution
cycle), using single and multi-dimensional arrays, such as numerical,
string, char, and structure types.

8. Design, implement and manipulate string class data types as objects in
order to store string type data.

Effective Fall 2023 Page 3 of 9

9. Implement skills required for reading data from and writing results to text
files in C++.

Major Topics: I. Evolution of programming languages (4 hours, lecture)

A. History (First, Second, third and Fourth generation languages)
B. Programming Paradigms

1. Machine Code
2. Procedural
3. Object Oriented

II. Fundamentals of the C++ language (4 hours, lecture)

A. Use of the computer and computer languages
B. Problem analysis
C. Meaning of an algorithm

III. Elementary data types and operations (5 hours, lecture)

A. Numeric Data
1. Real
2. Integer

B. Character Data
1. Char
2. String

IV. Design with control structures (9 hours, lecture)

A. Design with decision making steps: use of if, if-else, nested if, multi-
alternative if, and switch statements

B. Design with repetitions steps: use of iteration statements

V. Design with sub programs (block-structured programming style) (12 hours,
lecture)

A. Functions with and without parameters/return values
B. Use of control structures in the context of sub programs

VI. Input/Output File manipulations (6 hours, lecture)

A. Use of text files
1. Processing input Files
2. creating output files

VII. Design with large block of data in main memory (10 hours, lecture)

A. Use of structured data-types
1. arrays
2. structures

B. operations (such as read, print, search, and sort)

Effective Fall 2023 Page 4 of 9

VIII. Classes and objects (4 hours, lecture)

A. Demonstrating design and development
B. Use of a user-defined class

IX. Fundamentals of the C++ language (7 hours, lab)

A. Use of the computer and computer languages
B. Problem analysis
C. Meaning of an algorithm

X. Elementary data types and operations (4 hours, lab)

A. Numeric Data
1. Real
2. Integer

B. Character Data
1. Char
2. String

XI. Design with control structures (9 hours, lab)

A. Design with decision making steps: use of if, if-else, nested if, multi-
alternative if, and switch statements

B. Design with repetitions steps: use of iteration statements

XII. Design with sub programs (block-structured programming style) (12 hours,
lab)

A. Functions with and without parameters/return values
B. Use of control structures in the context of sub programs

XIII. Input/Output File manipulations (9 hours, lab)

A. Use of text files
1. Processing input Files
2. creating output files

XIV. Design with large block of data in main memory (11 hours, lab)

A. Use of structured data-type
1. array
2. structures

B. operations (such as read, print, search, and sort)

XV. Classes and objects (2 hours, lab)

A. Demonstrating design and development
B. Use of a user-defined class

Total Lecture Hours: 54

Effective Fall 2023 Page 5 of 9

Total Laboratory Hours: 54

Total Hours: 108

Primary Method of Evaluation: 2) Problem solving demonstrations (computational or non-computational)
Typical Assignment Using

Primary Method of Evaluation:
Analyze the problem below and develop an algorithm based on your analysis.
Convert the algorithm into a menu-driven C++ program that will read the
inventory file of a company and present a menu to the user with the options
shown below. Create an inventory report. Update the input file before stopping
the program.

The menu options should be the following

Menu Item:

1.
1. Order Products

Required Features:

If the order quantity is below the minimum required, print an error message and
allow the user to quit ordering or change the quantity ordered. Allow as many
orders as the user likes to be placed. If the order quantity is larger than the supply
on-hand, fill the order for the supply on-hand, set the on-hand to zero and
indicate a back order for the remaining amount in the end report. After the user
orders the products, print the bill.

Menu Item:

1.
2. Display Inventory

Required Features: Print a list of available products, their names and Product IDs.

Menu Item:

1.
3. Search for Product Details

Required Features: Given the product ID, print the quantity on hand, the price,
and, the minimum order quantity. Prompt the user for Product ID.

Menu Item:

1.
4. Add a New Product

Required Features: Prompt the user for the information needed to describe the
new product. Automatically supply a Product ID.

Effective Fall 2023 Page 6 of 9

Menu Item:

1.
5. Remove a Product from Inventory

Required Features: Prompt the user for Product ID.

1.
6. Sort List Based on Product ID
7. Quit

The input file contains information about the products available. The input is
from a file (inventory.dat) and the output is to be written to a file (name by the
user). A sample input file is provided (and can be downloaded from the class
account in the lab) to test your program.

The end report will include the details of items in the inventory in a tabular form.
The program calculates the sales of each item, marks for re-ordering those items
that have fallen below the re-order amount, and presents the results in a tabular
form. The program also calculates and prints the total sales for the day. Finally,
the program will update the inventory input file.

Other Requirements:

• You must develop a complete and detailed algorithm.
• You must have a maximum of 50 distinct products.
• You must use an array of strings to store the names of the products.

Product names may not exceed 10 characters.
• You must use a two-dimensional array of integers to store the Quantity

On-Hand, the Re-Order Quantity, the Minimum Order Quantity, and the
Product ID.

• You must use an array of floats to store the price of the products.
• You must have a modular program with many functions. Main will declare

the necessary variables and will call the functions to do the work.
• You must prompt the user, when appropriate.
• You must read the input and output file names from the keyboard.
• You must use the following data types:

1. Use int for the Product ID, the Quantity On-Hand, the Re-Order Quantity,
and the Minimum Order Quantity.

2. Use float for the Price
3. Use string (maximum 10 characters) for the Product Name.

• You must not use structures, even if you know how to use them. If you
do, you will not get credit for this assignment.

Critical Thinking Assignment 1: In this assignment you will write two separate programs, so you must create

two projects. Both will do the same thing, but they will use different tools.
Both programs will request the user to input a line of text. The program must
then analyze the text to determine whether or not it is a palindrome. A

Effective Fall 2023 Page 7 of 9

palindrome reads the same forwards and backwards while ignoring
punctuation and spaces.

For example, these are all palindromes:

abba abccccba

radar

Dad

Madam, I'm Adam

A man, a plan, a canal, Panama!!!

The letter a is also a palindrome, as is any letter by itself. Finally, using this
definition, the empty string is also considered a palindrome. A palindrome is
NOT case sensitive. The expression doesn't even need not make any sense,
such as with abccccba.

In the first project, you are restricted to using the "string" library- you may not
use

"cstring". In the second project, the situation is reversed; you may only use
"cstring", not "string". No global variables, global constants or global arrays are
allowed. (The one exception is that I will allow a global constant for the
maximum size of the array, which I have a set at 50). For both programs, you
must create a loop that allows the user to test several expressions until the
user chooses to quit. However, it must allow for any kind of user response such
as y, Y, yes or Yes for the response. Functions are required. One function
should test an expression to see if it is a palindrome- it should have the
prototypes: bool isPal(const string&) and bool isPal(const char[]), depending on
which program you are doing. You should also have a function that removes
punctuation from the expression- how you code this is up to you. I will give
suggestions each day in class.

After finishing both programs, compare and contrast the two approaches in a
short, but well-written paragraph.

Critical Thinking Assignment 2: The program you will write will calculate the perimeter and area of any
arbitrary triangle. The user has to choose from among three ways to give the
input, namely

1. the length of all three sides
2. the lengths of two sides and the measure of the included angle, or
3. the measures of two angles and the length of the included side.

Once the user has entered the input, the program should perform the proper
operations to calculate the lengths of all three sides of the triangle (a, b and c),
the measures of all three angles (A, B and C), the perimeter of the triangle, and
the area of the triangle. As you see in the diagram, side a lies opposite the
angle A, side b lies opposite the angle B, and side c lies opposite the angles C.

Effective Fall 2023 Page 8 of 9

You must use functions to implement this program.

Once you have finished, compare the types of inputs offered the user in your
program. Which one took the least amount of code to solve? Which one took
the greatest amount of code to solve? Write a short paragraph explaining why
one approach required more code than the other. Write a second paragraph
discussing the strengths and weaknesses inherent in offering user multiple
input options.

Other Evaluation Methods: Completion, Homework Problems, Other Exams, Written Homework
Instructional Methods: Lab, Lecture

If other:

Work Outside of Class: Problem solving activity, Required reading, Study
If Other:

Up-To-Date Representative
Textbooks:

Tony Gaddis. Starting Out with C++: From Control Structures through
Objects. 9th ed. Addison-Wesley, 2017.

Alternative Textbooks:

Required Supplementary
Readings:

Other Required Materials: Students need media or mathod to save their work done in the lab.
Requisite: Prerequisite

Category: communication or computation skill

Requisite course(s): List both
prerequisites and corequisites

in this box.

Mathematics170

Requisite and Matching
skill(s):Bold the requisite skill.
List the corresponding course
objective under each skill(s).

Ability to create trigonometric models and work with trigonometric functions.

MATH 170 Evaluate trigonometric functions and inverses, both with and without
technology.

MATH 170 -Solve problems using angles and right triangles.

Requisite Skill: or equivalent experience
Requisite Skill and Matching

Skill(s): Bold the requisite
skill(s). If applicable

Ability to create trigonometric models and work with trigonometric functions.
Evaluate trigonometric functions and inverses, both with and without technology.
Solve problems using angles and right triangles.

Requisite course:

Requisite and Matching
skill(s):Bold the requisite skill.
List the corresponding course
objective under each skill(s).

Requisite Skill:

Requisite Skill and Matching
skill(s): Bold the requisite skill.
List the corresponding course

objective under each skill(s). If
applicable

Effective Fall 2023 Page 9 of 9

Enrollment Limitations and
Category:

Enrollment Limitations Impact:

Course Created by: Gregory Scott

Date: 02/24/1997

Original Board Approval Date: 05/19/1997

Last Reviewed and/or Revised
by:

Satish Singhal

Date: 04/17/2022
Last Board Approval Date: 06/20/2022

